
The Chombo Framework for Block-Structured Adaptive Mesh Refinement
Algorithms

Dan Martin
Applied Numerical Algorithms Group (ANAG)

Lawrence Berkeley National Laboratory

Local Refinement for Partial Differential Equations
Variety of problems that exhibit multiscale behavior, in the form of localized
large gradients separated by large regions where the solution is smooth.

• Shocks and interfaces.

• Self-gravitating flows in astrophysics.

• Complex engineering geometries.

• Combustion.

• Magnetohydrodynamics: space weather, magnetic fusion.

In adaptive methods, one adjusts the computational effort locally to maintain a
uniform level of accuracy throughout the problem domain.

Block-Structured Local Refinement (Berger and Oliger, 1984)

1
n+ 2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level

Refined regions are organized into logically rectangular patches
Refinement performed in time as well as in space.

Chombo: a Software Framework for Block-Structured AMR
Requirement: to support a wide variety of applications that use block-structured
AMR using a common software framework.

• Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.

• Reuseable components. Component design based on mapping of
mathematical abstractions to classes.

• Build on public-domain standards: MPI, HDF5, VTK.

• Interoperability with other SciDAC ISIC tools: grid generation (TSTT), solvers
(TOPS), performance analysis tools (PERC).

Previous work: BoxLib (LBNL/CCSE), KeLP (Baden, et. al., UCSD), FIDIL
(Hilfinger and Colella).

Layered Design

• Layer 1. Data and operations on unions of boxes – set calculus, rectangular
array library (with interface to Fortran), data on unions of rectangles, with
SPMD parallelism implemented by distributing boxes over processors.

• Layer 2. Tools for managing interactions between different levels of refinement
in an AMR calculation – interpolation, averaging operators, coarse-fine
boundary conditions.

• Layer 3. Solver libraries – AMR-multigrid solvers, Berger-Oliger
time-stepping.

• Layer 4. Complete parallel applications.

• Utility layer. Support, interoperability libraries – API for HDF5 I/O,
visualization package implemented on top of VTK, C API’s.

Examples of Layer 1 Classes (BoxTools)

• IntVect i ∈ Zd. Can translate i1 ± i2, coarsen i
s , refine i ∗ s.

• Box B ⊂ Zd is a rectangle: B = [ilow, ihigh]. B can be translated, coarsened,
refined. Supports different centerings (node-centered vs. cell-centered) in each
coordinate direction.

• IntVectSet I ⊂ Zd is an arbitrary subset of Zd. I can be shifted, coarsened,
refined. One can take unions and intersections, with other IntVectSet s and
with Boxes, and iterate over an IntVectSet . Useful for representing irregular
sets.

• FArrayBox A(Box B, int nComps) : multidimensional arrays of Reals
constructed with B specifying the range of indices in space, nCompthe number
of components. Real* FArrayBox::dataPointer returns pointer to the
contiguous block of data that can be passed to Fortran.

Example: explicit heat equation solver on a single grid

// C++ code:

Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);

FArrayBox soln(grow(domain,1), 1);

soln.setVal(1.0);

for (int nstep = 0;nstep < 100; nstep++)

{

heatsub2d_(soln.dataPtr(0),

&(soln.loVect()[0]), &(soln.hiVect()[0]),

&(soln.loVect()[1]), &(soln.hiVect()[1]),

domain.loVect(), domain.hiVect(),

&dt, &dx, &nu);

}

c Fortran code:

subroutine heatsub2d(phi,nlphi0, nhphi0,nlphi1, nhphi1,

& nlreg, nhreg, dt, dx, nu)

real*8 lphi(nlphi0:nhphi0,nlphi1:nhphi1)

real*8 phi(nlphi0:nhphi0,nlphi1:nhphi1)

real*8 dt,dx,nu

integer nlreg(2),nhreg(2)

c Remaining declarations, setting of boundary conditions goes here.

...

do j = nlreg(2), nhreg(2)

do i = nlreg(1), nhreg(1)

lapphi =

& (phi(i+1,j)+phi(i,j+1)

& +phi(i-1,j)+phi(i,j-1)

& -4.0d0*phi(i,j))/(dx*dx)

lphi(i,j) = lapphi

enddo

enddo

c Increment solution with rhs.

do j = nlreg(2), nhreg(2)

do i = nlreg(1), nhreg(1)

phi(i,j) = phi(i,j) + nu*dt*lphi(i,j)

enddo

enddo

return

end

Distributed Data on Unions of Rectangles
Provides a general mechanism for distributing data defined on unions of rectangles onto
processors, and communications between processors.

(5,0)

(4,2)

(3,2)

(2,1)

(1,0)

(0,1)

(4,0)

(5,0)(3,2)

(0,0)

(2,0)

(1,1)

• Metadata of which all processors have a copy: BoxLayout is a collection of Boxes and
processor assignments: {Bk, pk}nGrids

k=1 . DisjointBoxLayout:public BoxLayout is a
BoxLayout for which the Boxes must be disjoint.

• template <class T> LevelData<T> and other container classes hold data
distributed over multiple processors. For each k = 1 ... nGrids , an ”array” of type
T corresponding to the box Bk is allocated on processor pk. Straightforward API’s for
copying, exchanging ghost cell data, iterating over the arrays on your processor in a
SPMD manner.

Software Reuse by Templating Dataholders
Classes can be parameterized by types, using the class template language
feature in C++.

BaseFAB<T> is a multidimensional array for any type T.
FArrayBox: public BaseFAB<Real>

In LevelData<T> , T can be any type that ”looks like” a multidimensional array.

Examples include:

• Ordinary multidimensional arrays, e.g. LevelData<FArrayBox> .

• A composite array type for supporting embedded boundary computations

• Binsorted lists of particles, e.g. BaseFab<List<ParticleType>>

Example: explicit heat equation solver, parallel case
p=0 p=1 p=2

p=3 p=0 p=1

p=2 p=3 p=0

Want to apply the same algorithm as before, except that the data for the domain
is decomposed into pieces and distributed to processors.

• LevelData<T>::exchange() : obtains ghost cell data from valid regions on
other patches.

• DataIterator : iterates over only the patches that are owned on the current
processor.

// C++ code:

Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);

DisjointBoxLayout dbl;

// Break domain into blocks, and construct the DisjointBoxLayout.

makeGrids(domain,dbl,nx);

LevelData<FArrayBox> phi(dbl, 1, IntVect::TheUnitVector());

for (int nstep = 0;nstep < 100;nstep++)

{

...

// Apply one time step of explicit heat solver: fill ghost cell values,

// and apply the operator to data on each of the Boxes owned by this

// processor.

phi.exchange();

DataIterator dit = dbl.dataIterator();

// Iterator iterates only over those boxes that are on this processor.

for (dit.reset();dit.ok();++dit)

{

FArrayBox& soln = phi[dit()];

Box& region = dbl[dit()];

heatsub2d_(soln.dataPtr(0),

&(soln.loVect()[0]), &(soln.hiVect()[0]),

&(soln.loVect()[1]), &(soln.hiVect()[1]),

region.loVect(), region.hiVect(),

domain.loVect(), domain.hiVect(),

&dt, &dx, &nu);

}

}

Layer 2: Coarse-Fine Interactions (AMRTools).
The operations that couple different levels of refinement are among the most
difficult to implement AMR.

• Interpolating between levels (FineInterp).

• Averaging down onto coarser grids (CoarseAverage).

• Interpolation of boundary conditions (PWLFillpatch, QuadCFInterp).

• Managing conservation at coarse-fine boundaries (LevelFluxRegister).

These operations typically involve interprocessor communication and irregular
computation.

Layer 3: Reusing Control Structures Via Inheritance (AMRTimeDependent,

AMRElliptic).
AMR has multilevel control structures which are largely independent of the
details of the operators and the data.

• Berger-Oliger timestepping (refinement in time).

• Multigrid iteration on a union of rectangles. (single AMR level)

• Multigrid iteration on an AMR hierarchy. (multilevel AMR solve)

To separate the control structure from the details of the operations that are being
controlled, we use C++ inheritance in the form of interface classes.

Layer 4: AMR Applications

• A general driver for an unsplit second-order Godunov method for hyperbolic
conservation laws. User provides physics-dependent components (characteristic
analysis, Riemann solver).

• Level solvers, AMR multigrid solvers for Poisson, Helmholtz equations.

• Incompressible Navier-Stokes solver using projection method. Includes
projection operators for single level, AMR hierarchy. Advection-diffusion
solvers.

• Wave equation solver.

• Time-dependent Ginzburg-Landau equation solver.

• Volume-of-fluid algorithm fluid-solid interactions.

AMR Utility Layer

• API for HDF5 I/O.

• Interoperability tools. We are developing a framework-neutral representation
for pointers to AMR data, using opaque handles. This will allow us to wrap
Chombo classes with a C interface and call them from other AMR applications.

• Chombo Fortran - a macro package for writing dimension-independent
Fortran and managing the Fortran / C interface.

• ParmParse class from BoxLib for handling input files.

• Visualization and analysis tools (ChomboVis).

Cartesian Grid Representation of Irregular Boundaries (EBChombo)
Based on nodal-point representation (Shortley and Weller, 1938) or finite-volume
representation (Noh, 1964).

.

Computation in Complex Geometry

Current Applications (partial list)

• Accelerator design and modelling (LBNL)

• Magnetic fusion (R. Samtaney, S. Jardin, PPPL)

• Star formation; multiphase microgravity flows (NASA CT Program).

• Solid mechanics (G. Miller, UC Davis and LBNL).

• Time-dependent Ginzburg-Landau equations (F. Alexander, LANL).

• Semi-local strings (J. Borrill, LBNL).

• Cosmology (F. Miniati, MPI-Garching).

• Low-Mach number geophysical, astrophysical flows (UC Davis, Univ. of
Chicago ASCI Center).

Gas Dynamics
Unsplit higher-order Godunov scheme with AMR for hyperbolic systems of
equations (AMRGodunov).

Includes flux correction at coarse-fine interfaces for conservation.

Elliptic Equations
AMR elliptic solver – used as standalone code (AMRPoisson) or as solver library
(AMRElliptic: AMRSolver class)

• Implements a multigrid solver for an AMR hierarchy of refined grids.

• Uses multilevel discretizations of the elliptic operators to maintain accuracy
in the presence of coarse-fine interfaces.

Wave Equation Solver

• Write second-order wave equation as first-order system in time.

∂ϕ

∂t
= π

∂π

∂t
= ∆ϕ

• Discretize Laplacian on AMR grid using RK4 in time, quadratic interpolation
in space for coarse-fine boundary conditions.

• Refinement in time: linear interpolation in time for coarse-fine boundary
conditions, treat π as a conserved quantity for the purpose of refluxing.

Particles
AMR-PIC code used in accelerator modelling

Time-dependent Ginzberg-Landau Equations
Diffusion equation with a nonlinear source term – used to model phase-field
dynamics (crystal growth, etc) (with F. Alexander, LANL)

Incompressible AMR Navier-Stokes
AMRINS code

• Implements a projection method for incompressible viscous flow.

• Freestream preservation maintained approximately in the presence of
coarse-fine interfaces using an advection velocity correction computed using
an auxiliary advected scalar.

• Viscous updates performed using L0-stable semi-implicit Runga-Kutta
scheme

Accelerator Design

Magnetohydrodynamics (Samtaney, et. al., 2003)
Fluid representation: AMR for magnetohydrodynamics, based on semi-implicit
methods.

• Explicit upwind discretizations for hyperbolic terms.

• Implicit discretizations for parabolic operators.

• Projection to enforce ∇ · ~B = 0 constraint.

ChomboVis Interactive Visualization and Analysis Tools

• “AMR-aware”

− Block-structured representation of the data leads to efficiency.

− Useful as a debugging tool (callable from debuggers (gdb))

• Visualization tools based on VTK, a open-source visualization library.

• Implementation in C++ and Python

− GUI interface for interactive visualization

− Command-line python interface to visualization and analysis tools, batch
processing capability – goal is a full analysis tool.

• Interface to HDF5 I/O along with C API provides access to broad range of
AMR users. (“Framework-neutral”)

Where it’s heading

Goal is for ChomboVis to become a full data analysis and visualization tool.

• Further evolution of Python scripting interface

• Data analysis functionality

• “Out of core” and parallel functionality for large datasets

• non-rectilinear coordinate systems

• Presentation graphics

Chombo, ChomboVis available from the ANAG website:

• http://seesar.lbl.gov/ANAG/software.html

• New Release, August 15, 2003.

Acknowledgements
DOE Applied Mathematical Sciences Program
DOE HPCC Program
DOE SciDAC Program
NASA Earth and Space Sciences Computational Technologies Program

